Factor Xa is a fibroblast mitogen via binding to effector-cell protease receptor-1 and autocrine release of PDGF.
نویسندگان
چکیده
The coagulation cascade protease thrombin is a fibroblast mitogen, but the proliferative potential of other coagulation proteases is not known. In this study we show that factor Xa stimulated human fetal lung fibroblast DNA synthesis in a concentration-dependent manner from 1 nM onward with a fourfold increase at 200 nM. The mitogenic effect of factor Xa was confirmed using a colorimetric proliferation assay and direct cell counting. Factor Xa and thrombin had equivalent potencies, and their stimulatory effects followed a similar time course. Comparable results were also obtained with primary human adult fibroblasts derived from lung, kidney, heart, skin, and liver. Factor VIIa also stimulated fibroblast proliferation, but only at concentrations >10 nM, whereas factor IXa had no effect. To begin to address the mechanism by which factor Xa is acting, we show that human fibroblasts express effector-cell protease receptor-1 and that blocking antibodies to this receptor and the catalytic site of factor Xa inhibited its mitogenic effect. Furthermore, factor Xa upregulated platelet-derived growth factor-A (PDGF-A) mRNA expression, whereas PDGF-B could not be detected, and a blocking antibody to PDGF inhibited the mitogenic effect of factor Xa. We conclude that factor Xa acts as a fibroblast mitogen via binding to effector-cell protease receptor-1 and the autocrine release of PDGF.
منابع مشابه
Coagulation factor Xa stimulates platelet-derived growth factor release and mitogenesis in cultured vascular smooth muscle cells of rat.
The mitogenic effect of activated coagulation factor X (factor Xa) was examined in cultured aortic smooth muscle cells (VSMC) from Wistar-Kyoto rats (WKY). Factor Xa stimulated DNA synthesis and cell growth in VSMC, not through the phospholipase C-protein kinase C pathway because increase of inositol monophosphate (IP) accumulation and intracellular Ca2+ concentration was not observed, but prob...
متن کاملPlatelet-derived growth factor-BB-induced human smooth muscle cell proliferation depends on basic FGF release and FGFR-1 activation.
We have shown that the G protein-coupled receptor (GPCR) agonists, thrombin and Factor Xa, stimulate smooth muscle cell (SMC) proliferation through transactivation of the EGF receptor (EGFR) or the FGF receptor (FGFR), both of which are tyrosine kinase receptors. In the present study, we investigated whether platelet-derived growth factor (PDGF), a tyrosine kinase receptor agonist, might transa...
متن کاملThrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.
PURPOSE De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa an...
متن کاملFactor Xa as an interface between coagulation and inflammation. Molecular mimicry of factor Xa association with effector cell protease receptor-1 induces acute inflammation in vivo.
Coagulation proteases were tested in a rat model of acute inflammation. Subplantar injection of Factor Xa (10-30 microg) produced a time- and dose-dependent edema in the rat paw, and potentiated carrageenin-induced edema. In contrast, the homologous protease Factor IXa was ineffective. This inflammatory response was recapitulated by the Factor Xa sequence L83FTRKL88(G), which mediates ligand bi...
متن کاملActivated blood coagulation factor X (FXa) induces angiogenic growth factor expression in human retinal pigment epithelial cells.
PURPOSE To determine the transcriptional regulation of the blood coagulation factor X (FX) in cultured human retinal pigment epithelial (RPE) cells, and whether the effects of FXa on the chemotaxis and expression of angiogenic growth factors are mediated by autocrine growth factor signaling. METHODS Alterations in gene expression and secretion of growth factors were determined by real-time RT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2001